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ABSTRACT A

Definitions of 3D digital surface and plane are
introduced. Many geometric properties of these objects
are examined. In particular, it is shown that digital
convexity is neither a necessary nor a sufficient condition
for a digital surface element to be a convex digital plane
element, but it is both necessary and sufficient for a
digital surface to be a digital plane. Also algorithms
are presented to determine whether or not a finite set of
digital points is a (convex) digital plane element.
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1. Introduction

Development of a theory of three-dimensional (or simply,

3D) digital geometry is essential to research in 3D image pro-

cessing, which has seen growing interest recently [1-5, 12,

15-18]. Some work has been done already on the subject [8, 10,

11]. This paper is concerned with 3D digital surfaces and

planarity.

There are many problems with which 3D digital image process-

ing is concerned. Three problems among them which this paper deals

with are the following. The first is when a set of 3D digital V
points may be considered as a digital surface rather than a digi-

tal solid and in particular, as a digital plane. Next is the

problem of digitization, that is, methods of representing a 3D

continuous surface by a finite set of 3D digital points. The

last problem is how to tell whether or not a digital surface

element is a representation of a convex plane element.

We define what 3D digital surfaces, planes and plane elements

are. Also a method of digitizing 3D continuous surfaces is given.

It is shown that the digitization of a plane always results in a

digital surface, which is a motivation for our definition of a

3D digital surface.

Geometric properties of digital plane elements are examined.

As shown later, digital convexity is neither a necessary nor a

sufficient condition for a digital surface element to be a convex

digital plane element. That is, a convex digital plane element

need not be digitally convex and a digital surface element which
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is digitally convex need not be a convex digital plane element.

Thus, an important property of convex plane elements in 3D

Euclidean geometry is not preserved in 3D digital geometry.

Next shown is that a digital surface is a digital plane if and

only if it is digitally convex. This is a geometric property

that carries over from 3D Euclidean geometry.

Next we study a necessary and sufficient condition for a

digital surface element to be a digital plane element. This

enables us to design algorithms to determine whether or not a

set of 3D digital points is a digital plane element and in

particular, a convex digital plane element.

In the next section, notations, terminology and definitions

are introduced. Also a few known results are stated that are

needed in this paper. Section 3 discusses the digital images of

planes. In Section 4, geometric properties of digital plane

elements are discussed, while those of digital planes are discussed

in Section 5. In Section 6, algorithms are presented to determine

whether or not a set of 3D digital points is a digital plane

element and in particular, a convex digital plane element. Also

the complexities of these algorithms are analyzed.

2.



(2D) digital line segments

A (2D) digital arc R is a (2D) digital line segment if

there is a line segment f whose digital image is R, that is,

R=I(f) (R=It(f)).

Below we state as lemmas a few known results that are needed

in this paper.

Lemma A (Theorem 5 in [9])

The following statements are equivalent:

(i) A digital region is digitally convex.

(ii) A digital region has the chord property.

(iii) The convex hull of a digital region contains no digital

point which is not a point of the digital region.

Lemma B (Theorem 6 in (7])

A digital region is digitally convex if and only if for any

two of its points, there is a digital line segment in the digital

region that connects the two.

Lemma C (Theorem 7 in [8])

A digital solid is digitally convex if and only if it has

the chordal triangle property.

Lemma D (Theorem 4 in [10])

A digital arc is a digital line segment if and only if there

are two coordinate planes such that the projections of the digital

arc on them are 2D digital arcs and have the chord property.

Now we introduce definitions of digital surface and digital

plane.

.... . "... - '"; . • * -' -....



Digital surfaces

A 26-connected subset S of D is a digital surface if for

each point d = (i,j,k) of S, the following holds:

In at least two of SnDx=i, SNDy=j and SDz=k, point d has

at most two 8-neighbors. When it has two, they are not mutually

8-neighbors. If in one of them, say SODz=k, point d has more

than two 8-neighbors or two 8-neighbors that are mutually

8-neighbors, then both d'=(i,j,k-l) and d"=(i,j,k+l) are not.

points of S.

A point d=(i,j,k) of a digital surface S is a boundary

point of S if it has only one 26-neighbor in SODx.i, SADv. j  or

S kD A point d of S is an interior point of S if it is not

a boundary point.

A simple digital surface is an infinite set of digital points

which is a digital surface with no boundary points. A closed

simple digital surface is a finite digital surface with no

boundary points. A digital surface element is a finite digital

surface whose boundary points are 26-connected.

When a (Euclidean) surface f intersects a coordinate line,

there may be one or two digital points that are nearest to the

point of intersection. In case there are two, the one inside f

is chosen as the nearest, that is, the one that lies on the side

opposite the normal vector of the surface.

Digital images of surface elements and simple surfaces

Let f be a surface element or a simple surface. Whenever

f intersects a coordinate line, the nearest digital point to the

intersection becomes a point of the digital image of f, which

is denoted by I(f).
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Digital plane elements

A 26-connected digital surface element R is a digital

plane element if there is a connected finite subset g of a plane

whose digital image is R, that is, R=I(g).

Convex digital plane elements

A digital plane element R is convex if its projections

onto the coordinate planes are convex digital regions.

Digital planes

A simple digital surface S is a digital plane if for any

given three points of S, there is a subset of S that contains

the three points and is a digital convex plane element.

It is easy to see that for any digital surface S, there

is a surface f such that S-I(f). It is obvious that the digital

image of a surface element or a simple surface is not necessarily

a digital surface. However, we will show that the digital image

of a plane is a digital surface. We also note that we did not

define digital plane as the digital image of some plane.

Consider the digital surface S={(i,j,O)jic NUN-, jcN-}U

{(i,j,l)IiE NUN-,jcN}, where N-is the set of all negative integers

and N is the set of all nonnegative integers. There is no

plane f whose digital image is S. But for any 26-connected

finite subset R of S, there is connected finite subset g of

a plane whose digital image is R. Hense, S is a digital plane

by our definition.



3. Digital images of planes

In this section we show that the digital image of a plane

is a digital surface. Also we state two simple corollaries

to this theorem.

Let p be a plane given by equation ax+by+cz+e=O, and

assume without loss of generality that 0_ab c and O<c.

Lemma 1

The digital image of plane p may be determined by its

crossings of vertical grid lines only (coordinate lines parallel

to the Z-axis). Hence, on each coordinate line parallel to

the Z-axis, there is exactly one point of the digital image of

plane p.

Proof

Let p cross a grid line parallel to the Y-axis, x=£ and

z=n, at y', and let m=Ly'j. If y'=m, then (t,m,n) is a point

of I(p) obtained from its crossing of the grid line x=k and

z=n. It is also a point of p crossing vertical grid line x=k

and y=m. Let y'apl and consider the line f given by by+cz=

-(a£+e), which is the intersection of plane p and the (x=£) -plane.

Suppose y'-m < 1/2. Then (k,m,n) is a point of I(p) determined

by its crossing of the grid line x=£ and z=n. Let z' be the

intersection of f and vertical grid line x=k and y=m. Since

b -: c, n-z' < 1/2 and thus point (£,m,n) of I(p) is also

obtained from its crossing of a vertical grid line. Next

suppose y'-m ! 1/2. Then (£,m+l,n) is a point of I(p) obtained

from its crossing of the grid line x=£ and z=n. Let z' be the

intersection of f and vertical grid line x=t and y=m+l. Then



z'-n < 1/2 and thus point (t,m+l,n) of I(p) is also obtained

from its crossing of the grid line x=£ and z=n.

Similarily, those points of I(p) that are determined by p

crossing coordinate lines parallel to the X-axis are also obtained

by its crossing of vertical grid lines.

Since p crosses each vertical grid line exactly once, the

digital image of p has exactly one point on each coordinate

line parallel to the Z-axis. o

Theorem 2

The digital image of a plane is a digital surface.

Proof

Let p be a plane and suppose that it is given by the equation

ax+by+cz+e=O. We may assume without loss of generality that

0 afb-c and O<c. Then by Lemma 1, T(p) has exactly one point

on each vertical grid line and is obtainable from the intersection

of p and vertical grid lines.

Let d=(i,j,k) be a point of I(p). Then d is the only point

of I(p) on the vertical grid line x=i and y=j. K

First consider I(p) n Dx=i, and let d'=(i,j-l,k') and

d"=(i,j+l,k") be the only two points of I(p) on vertical lines

x=i, y=j-i and x=i, y=j+l, respectively. Since b5c,

0Ik-k'I,jk-k"I -i. Thus, d' and d" are the only two 8-neighbors

of d and are not mutually 8-neighbors.

Similarly, d has only two 8-neighbors in I(p)N D and

they are not mutually 
8-neighbors.

In I(p) n Dzk, d may have more than two 8-neighbors but

both (i,j,k-l) and (i,j,k+l) are not points of I(p) because
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d=(i,j,k) is the only point of I(p) on the vertical grid line

x=i and y=j. Thus I(p) is a digital surface. o

Corollary 3

The digital image of a convex subset of a plane is a digital

surface element.

Corollary 4

If it is connected, the digital image of a connected bset

of a plane is a digital surface element.

As mentioned before, the digital image of a surface ) ot

necessarily a digital surface. However, it is very likel

that the digital image of a surface whose curvature at every

point is small is a digital surface. We note that a plane is a

surface with zero curvature everywhere and its digital image

is a digital surface. But it is also the case that however small

the curvature of a surface is everywhere, its digital image

may not be a digital surface. As an example, consider the

surface q whose intersection with coordinate plane x=i,

i being any integer, is as shown in Figure 1.

Surface q is obtained by slightly perturbing plane given

by y+z - 1/2 = 0 so that q intersects coordinate planes y=-l and

y=e at z=-i/2+e and z=i/2+c, respectively, where c is a small

positive number. The digital image of q is not a digital surface

but the curvature of the plane at every point may be as close

to 0 as desired.



4. Digital plane elements and their geometric properties

We examine several geometric properties of convex digital

plane elements. Many of the results shown are negative in that

geometric properties enjoyed by 3D Enclidean convex plane

elements are not enjoyed by 3D convex digital plane elements. The

most interesting result is that digital convexity is neither a

necessary nor a sufficient condition for a digital surface element

to be a convex digital plane element. Because of Lemma C, it

suffic3s to show that the chordal triangle property is neither a

necessary nor a sufficient condition, which is shown in the

following theorem.

Theorem 5

The chordal triangle property is neither a necessary nor

a sufficient condition for a digital plane element to be a

convex digital plane element, and the same is true for the

chord property.

Proof

The finite set of digital points R shown in Fig. 2 is a

convex digital plane element. For, obviously the projection of

R on each coordinate plane is digitally convex, and it is easy

to see that R is the digital image of a finite subset of the

plane given by the equation 2y+5z-12.5=0. But R does not have

the chord property and hence it does not have the chordal

triangle property either. To see this, consider the chord

between (0,0,2) and (2,5,0). The point (1, 2 1/2 ,l)on the chord

is not near R.
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It is not difficult to see that the finite set of digital

points R' in Fig. 3 has the chordal triangle property, hence

the chord property also. But it is not only not a convex

digital plane element but not even a digital plane element. We

note from the proof of Lemma 1 that the projection onto one of

the coordinate planes of the digital image of a plane element is

one-to-one. Since the projection of R' onto any coordinate

plane is not one-to-one, R' is not a plane element. o

Theorem 6

The volume property is a necessary but not a sufficient

condition for a digital plane element to be a convex digital

plane element.

Proof

Consider the set R' of digital points in Fig. 3, which is

not even a digital plane element. Since a finite set of digital

points has the volume property if it has the chordal triangle

property and R' has the chordal triangle property, R' has

the volume property. Hence, the volume property is not a

sufficient condition.

Now suppose that a digital surface element R is a convex

digital plane element. Then there is a connected finite subset

g of a plane p whose sigital image I(g) is R. Let p be given

by ax+by+cz+e=0 and assume without loss of generality that

O5afb5c and O<c. Consider the projection R of R onto the

(z=O)-plane. Let H(Rz) be the convex hull of Rz. Then by

..-. .~-
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the definitions of 2-D digital Qonvexity and digital plane

element, the set of all digital points of H(Rz ) is Rz . Let h

be the subset of p such that its projection hz onto the (z=O)-plane

is H(Rz). Also let h' and h" be the plane elements obtainedz

by translation of h parallel to the Z-axis by 1/2 and -1/2,

respectively. Then every point of R lies between h' and h",

possibly on h" but not on h'. Let v be the volume bounded by

h', h" and the vertical surfaces connecting the boundaries of

h' and h". Then every point of R is in V and every digital

point of V except those on h' is a point of R. Since V is

convex and the convex hull H(R) of R is a subset of V and has

no point of h', H(R) contains no digital point not in R. Thus,

R has the volume property. 0

Theorem 7

It is a necessary but not a sufficient condition for a

digital plane element R to be a convex digital plane element

that for any two points dl,d 2 of R, there is a digital line

segment A in R whose endpoints are dI and d2 .

Proof

Consider the digital surface element R shown in Fig. 2,

which is not a digital plane element. It is easy to show that

for any two points dl,d 2 of R, there is a digital line segment

whose endpoints are dI and d2.

Now let R be a digital plane element and dl,d 2 be any

two points of R. Consider Rz and Ry which are the projections

.. .. . . . .. . .. .. . .. .. . .. ... .. " " n - t .. .. -I t " . . .. ,, m . ... - ,,y



of R onto the (z=0)-plane and (y=0)-plane, respectively. By

definition they are convex digital regions. Let d1 ,z and d2, z

be the points of Rz that are projections of dI and d2.

respectively, onto the (z=O)-plane. Since R is a convexz

digital region, there is a digital line segment whose endpoints

are dIz and d 2,z by Lemma B. Let f be a line on the

(z=o)-plane such that the digital line segment in Rz connecting

dl, z and d2, z is a subset of the digital image of fz' I'(fz)"

Let f be the plane which is perpendicular to the (z=O)-plane

and intersects it at fz" Similarly, let g be a plane perpendicular

to the (y=0)-plane such that a digital line segment in RY

connecting dl'y and d2,y is a subset of the digital image of

gz ,the line of intersection of the two planes. Let h be the

line of intersection of the two planes f and g. Then dI and d

are points of the digital image of h, I(h) and the segment of

I(h) between dI and d2 is a subset of R. o

Theorem 8

The digital image of a convex plane element is not

necessarily a convex digital plane element.

Proof

Consider the triangle T whose vertices are (0,0,0),

(2, 1/2, - 1) and (0,2, -1) shown in Fig. 4. Its digital image

I(T) is the set of five digital points indicated in the figure.

Since its projection onto the (z=O)-plane is not digitally convex, it

is not a convex digital plane element. 0



5. Digital planes and their geometric properties

Geometric properties of digital planes are studied in this

section. The main result is that digital convexity is a

necessary and sufficient condition for a simple digital surface

to be a digital plane. We first define the distance between a

finite set of digital points and a (Euclidean) plane. Let T

be a finite set of digital points and p a plane. Suppose

d = (i,j,k) is a point of T. The z-distance between d and p,

distz (d,p), is defined to be the vertical distance from d to p,

that is, if w = (i,j,z') is a point of p, then dist z(d,p) =

Iz'-kI; dist (d,p) and dist (d,p) are similarly defined. The
x y

distance between T and p is defined by dist (d,p)= min{maxd£T

dist x(d,p)}, maxdET maxdeT {dist z(d,p))}.

Lemma 9

Given any digital plane, there is a coordinate plane such

that the projection of the digital plane onto it is one-to-one

and onto the set of its digital points.

Proof

Let the simple digital surface S be a digital plane. Suppose

that the projectic:is of S onto each coordinate plane are bounded

by two parallel lines. Then S is bounded by a parallelepiped and so

is finite, which is a contradiction. Therefore, there is a

coordinate plane, say the (z=O)-plane, such that Sz, the projection

of S onto it, is not bounded by any two parallel lines.

Choose dl, d2 , d3 of S such that the (Euclidean) distances

between each pair of d l, d2z, d3z, are large enough, where diz



is the projection of di onto the (z=O)-Plane. Sincp S is q cligital

i1

plane, there is a convex subset T of S that contains dl, d2,

d and is a convex digital plane element. Let p be the planed3

given by ax+by+cz+e=O such that the distance between T and p

is the minimum. Assume without loss of generality that

0-ahbnc. We have the following two cases:

Case 1 The distance between T and p isO. 0

(i) 0 = a = b

Every point of T lies on the (z=k)-plane, where k= -e/c.

Consider point d = (i,j,k) which is an interior point of T.

Since d has four 4-neighbors in TnDz= k c SfD z=k, both

(i,j,k+l) and (i,j,k-l) are not points of S. Hence, there is

no other point of S on the grid line which is parallel to the

Z-axis and passes d because S is a digital plane. Therefore,

the projection of the points of S whose projection onto the

(z=0)-plane is an interior point of S is one-to-one. If S hasz z

no boundary points, then Sz is the set of all digital points of the

(z=O)-plane. Thus, the projection of S onto the (z=O)-plane

is one-to-one and onto the set of its digital points. Suppose

Sz has a boundary point d=(i,j,k). If neither (i,j,k+l) nor

(i,j,k-l) is a point of S, then d is ( boundary point of S, which

is a contradiction. Assume that (i,j,k+l) is a point of S.

Since S is a digital plane (i,j,h+2) is not a point of S.

Assume without loss of generality that (i,j+l,k) is a point of

S. Then each of (i,j,k), (i,j+l,k) and (i,j,k+l) has two



8-neighbors that are mutually 8-neighbors in SnD x=i* Thus,

none of (i+l,j,k), (i-l,j,k), (i+l,j+l,k), (i-l,j+l,k),

(i+l,j,k+l) and (i-l,j,k-l) are points of S. Thus, (i,j,k+l)

is a boundary point of S, which is a contradiction. So

(i,j,k+l) is not a point of S. Similarly, (i,j,k-l) is not a

point of S. This again is a contradiction. Thus, S has no

boundary point, and the projection of S onto the (z=O)-plane

is one-to-one and onto the set of digital points of the (z=O)-plane.

(ii) O=a and b=c, or a=b=c.

Every point of T lies on plane y+z=k or x+y+z=k, where

k= -e/c. Arguments that are similar to but a little more involved

than that for (i) prove that the projection of S onto the

(z=O)-plane is one-to-one and onto the set of the digital points

of the (z=O)-plane.

Case 2 The distance between T and p is not zero.

Translate p downward parallel to the Z-axis by the minimum

distance so that every point of T lies above p. Let p' be

the plane obtained by translating p upward parallel to the Z-axis

by a distance of 1. Then the points of T lie between p and p',

some on p but none on p'. Consider point d=(i,j,k) which is

an interior point of T. Since a<c, d has at least three

8-neighbors in TnD z=k c SnDz=k. Thus, both (i,j,k+l) and

(i,j,k-l) are not points of S and no point of S other than d is

on the grid line that passes d and is parallel to Z-axis.

Therefore, the projection nf the points of S whose projections

-.. ,**.. . . . II I I *



onto the (z=O)-plane are interior points of S is one-to-one.

Thus, every point of S lies between p and p', possibly on p

but not on p', because S is a digital plane. Suppose that S

has a boundary point d=(i,j,k). Since (i,j,k-l) lies below

p and (i,j,k+l) lies on or above p', they are not points of S.

Thus, d is a boundary point of S, which is a contradiction.

Therefore, the (z=0)-plane is a coordinate plane such that the

projection of S is one-to-one and onto the set of its digital

points. o

Lemma 10

Digital planes have the chordal triangle property.

Proof

Let S be a digital plane and dl,d 2 ,d3 any three points of

S. By the above lemma, there is a coordinate plane, say the

(z=0)-plane, such that the projection of S onto it is the set

of all of its digital points. Let dlz, d2z and d3z be the

projections of d1 , d2 and d3 onto the (z=0)-plane. We denote

by tz the triangle whose vertices are dlz, d2z and d3z and by

Tz the set of digital points of tz . Choose three digital points

d'1l, d'2 z' d' 3z on the (z=O)-plane so that the following are

satisfied: The triangle t' whose vertices are d' d' d'z iz' 2z' 3z

contains tz, and no point of Tz is a boundary point of T'z, the

set of digital points of t'

Let d', d'2 and d'3 be the points of S whose projections

onto the (z=0)-plane are d'iz, d'2z and d'3z, respectively.



Since S is a digital plane, there is a finite subset R of S

that contains d'1 , d'2 , d' 3 and is a convex digital plane

element. Let p be a plane such that R is the digital image of

a subset g of p, that is, R=I(g). Suppose that p is given by

the equation ax + by + cz + e =0 and assume without loss of

generality that 0 aEb5c. Then the projection of R onto the

(z=0)-plane is one-to-one. Let t' be the subset of p such that

its projection onto the (z=O)-plane is t' and T and T' the

subsets of S whose projections onto the (z=O)-plane are T

and T respectively. Obviously, T' is a subset of R. Let

t'u and t'b be the triangles obtained by translation of t'

parallel to the Z-axis by 1/2 and -1/2, respectively. Then every

point of T' is between t' and t' b' possibly on t'b but not

on t'

If t is the chordal triangle of dl, d2 and d3, then it lies

between t' and t' , possibly touching t'b but not t'u.b ub

Consider any point w on t. If it is a digital point, then it

must be a point of T' and thus it is near S. It is easy to see

that if it is not a digital point, then there is at least one

point of T' which is near w. Thus, every point of t is near S.

Therefore, S has the chordal triangle property. 0

Lemma 11

If a simple digital surface has the chordal triangle

property, then there is a coordinate plane such that the pro-

jection of the digital surface on the coordinate plane is

one-to-one and onto the set of all digital points of the

coordinate plane.

, ,. ,



Proof

If a set S of digital points is a digital surface, then there

is a coordinate plane, say the (z=O)-plane, such that Sz, the

projection of S onto it, is not bounded by any two parallel

lines as shown in the proof of Lemma 9. Let dl, d2 , d3 be

points of S that satisfy the following: (i) The (Enclidean)

distance between each pair of d1 z, d2z d3z is as large as

we wish, where d. is the projection of di onto the (z=O)-plane.
iz1

(ii) If R is the set of all points of S whose projections onto

the (z=0)-plane are points of the triangle with vertices

dlz, d2z and d3z, then R lies above the triangle t whose vertices

are dI , d2 and d3. Such dl, d2 and d3 exist because S is a

digital 'surface and has the chordal triangle property. Suppose

that t is a subset of the plane p represented by ax+by+cz+e=O

and assume without loss of generality that 05absc. First

consider the case where not all the points of intersection of t

with grid lines parallel to the Z-axis are digital points.

Using similar arguments as in the proof of Lemma 9, there is at

most one point of R on each grid line parallel to Z-axis. If

p1 is the plane obtained from p by translating it in parallel to

the Z-axis by distance 1, then all the points of S must lie

between p and p', possibly on p but not on p', because S has

the chordal triangle property. Again by similar arguments, Sz

has no boundary points. So the projections of S onto the

(z=O)-plane is one-to-one and onto the set of all digital

points of the (z=O)-plane. The case where all the points of

intersection of t with grid lines parallel to the Z-axis are

digital points, that is, 0 = a = b, 0 = a and b = c, or a=b=c,

may be treated similarly. o



Lemma 12

If a simple digital surface has the chordal triangle

property, then it is a digital plaine.

Proof

Let S be a simple digital surface and suppose that it has

the chordal triangle property. By the above lemma, there is a

coordinate plane such that the projection of S onto it is one-to-

one and onto the set of all of its digital points. Let

dI, d2 and d3 be any three points of S and d'1 , d'2 and d'3 be

the projections of dl, d2 and d3 onto the coordinate plane,

respectively. We denote by t' the triangle whose vertices are

d'l d'2 and d'3 and by T' the set of digital points of t'.

Let T be the subset of S whose projection onto the coordinate

plane is T'. Let p be a support of T such that the distance

between p and T is not greater than the distance between any

support of T and T. Suppose that p is given by equation

ax+by+cz+e=O and assume without loss of generality that

0a'bnc. Assume that the distance between p and T is less than

1. Then the vertical distance from every point of T to p is

less than 1. Assume without loss of generality that T lies

above p. Let q be the plane obtained by translating p upward

parallel to the Z-axis by a distance of 1/2. Then the vertical

distance from any point of T above q is less than 1/2 and from

any point of T below q is less than or equal to 1/2. Thus, by

Lemma 1 T is the digital image of a subset of q. Hence, S is

a digital plane by definition. Now assume that the distance



between p and T is greater than or equal to 1. Suppose that all

the points of T on p are collinear. (There must be at least

one point of T on p since otherwise p may be translated

parallel to the Z-axis toward T to obtain a plane with shorter

distance between T and the plane.) Then there are three points,

d4, d5 and d6, of T such that the distances between T and those

points are equal to the distance between p and T. Moreover,

one of the points of T on p, say d, is such that d', the pro-

jection of d onto the (z=O)-plane,is an interior point of the

triangle whose vertices are d'4 , d'5 and d' which are the

projections of d4, d5 and d6, respectively. For, otherwise

by slight rotation of p, we may obtain a support T such that

the distance between the new support and T is smaller than that

between p and T, which is a contradiction. Consider the chordal

triangle of T whose vertices are d4, d5 and d6. Let w be the

point of the chordal triangle whose x- and y-coordinates are

the same as those of d, that is, w and d are on the same

coordinate line parallel to the Z-axis. Since the distance between

w and d is at least 1 and d is the only point of T on the

coordinate line, w is not near T. Hence, S does not have the

chordal triangle property, which is a contradiction.

Suppose now that there are three noncollinear points,

day d4, d5 and d6, of T on p. Assume that there is a point,

say d, of T such that the distance between d and p is the same

as the distance between T and p, and d' is an interior point

of the triangle with vertices d7 , d8 and d9 which is on the same



coordinate line parallel to the Z-axis as d is not near T.

Thus, S does not have the chordal triangle property, which is

a contradiction. So assume that for every point of T whose

distance to p is equal to the distance between T and p, its

projection onto the coordinate plane is not an interior point

of the triangle with vertices d'4 , d'5 and d'6. Then there are

at least three noncollinear points, say d7, d8 and d9 , of T such

that the distances from them to p are equal to the distance

between p and T. If not, by slightly rotating p, we may obtain

a support such that the distance between the new support and T

is smaller than that between p and T. If any of d' , d'5 and d

is an interior point of the triangle whose vertices are

d' 7, d'8 and d'9 , then S does not have the chord prop-rty. Thus,

none of d'4, d'5 and d'6 is an interior point of the triangle.

Let d'1 0 , d' 11 and d'12 be three points on the coordinate

plane such that d'10 d '11, d']1 d 2 and d' 12 d' 0 are parallel to

d'4d' 5, d'5d'6 and d'6d' 4 , respectively, and d'4 , d'5 and d'6

are on d'ld'12 , d' d' 10 and d'1 0d'll, respectively (see

Figure 5). Then it is easy to see that d'7, d'8 and d'9 are

such points, where d' 7d 8, d'd'9 and d'9d' 7 are parallel to

d'4 d'5, d'5d'6 and d'6 d'4 , respectively. Let dl0 , dll and

d12 be the points of T whose projections are d' 10 , d'1 1 and

d',2 , respectively. If all of them are points of p, then the

chordal triangle of T with these three points as its vertices

is not near S because point w of the chordal triangle whose

projection onto the coordinate plane is d'7 is not near T.

......................



Similarly, if none of the three points are on p then the

chordal triangle is not near S. Suppose that two of the

three, say d1 0 and dll, are on p. Then the chordal triangle

of T whose vertices are d4, d1 0 and d11 is not near S. Next,

suppose that two of the three, say d1 0 and dll, are not on p.

Then the chordal triangle of T whose vertices are d1 0 , d1 1 and d9

is not near S.

Therefore, if the distance between p and T is greater than

or equal to 1, S does not have the chordal triangle property,

which is a contradiction to the hypothesis of the lemma.

Hence, the distance between p and T is less than 1 and so S

is a digital plane. u

Theorem 13

A simple digital surface is a digital plane if and only

if it has the chordal triangle property.

Because of Lemma C, we have the following theorem, which

is a corollary to the above theorem.

Theorem 14

A simple digital surface is a digital plane if and only

if it is digitally convex.



6. Algorithms

In this section algorithms are presented that determine

whether or not a digital surface element is a digital plane

element and a convex digital plane element.

The definitions of digital plane element and convex

digital plane element do not easily lead to the design of

such algorithms. Thus, we need some characterizations of the

above digital objects which lend themselves to development of

these algorithms. In the following we obtain such characteriza-

tions.

Theorem 15

A finite digital surface is a digital plane element if

and only if there is a support such that the distance between

the finite digital surface and the support is less than 1.

Proof

Suppose that S is a finite digital surface and assume that

plane p is a support of S such that the distance between the

two is less than 1. Let p be given by ax+by+cz+e=O and assume

0-a b-c. Then the vertical distance from any point of S

to p is less than 1. Let p' be the plane that is obtained

from p by upward translation parallel to the Z-axis by a distance

of 1/2. Then S is a subset of I(p'), the digital image of p'.

Thus, we may find a connected subset g of p' whose digital image

is S. Therefore, S is a digital plane element.

Now suppose that S is a digital plane element. Then there

is a plane p suc that g is a connected finite subset of p whose

digital image is S. Let p be given by ax+by+cz+e=O and assume



0-a- b'c. Then the vertical distance to p from every point of

S that lies above p is less than 1/2 and that from every point

of S that lies below p is at most 1/2. If p' is the plane

that is obtained from p by translation parallel to the Z-axis

downward by a distance of 1/2. then p is a support of S and

the distance between S and p is less than 1. o

Let S be a finite set of digital points and H(S) its

convex hull. If p is a plane such that a face F of H(S) is

a subset of p, then p is called the plane of the face F.

Theorem 16

A finite digital surface is a digital plane element if

and only if there is a face of the convex hull of the digital

surface such that the distance between the digital surface and

the plane of the face is less than 1.

Proof

Let S be a finite digital surface and H(S) its convex hull.

Suppose there is a face F of H(S) such that the distance between

S and p, the plane of the face F, is less than 1. Obviously,

p is a support of S. Hence, by Theorem 15 S is a digital plane

element.

Now suppose that S is a digital plane element. By

Theorem 15, there is a support of S such that the distance between

S and the support is less than 1. Let p be a support of S such

that the distance between p and S is the minimum. If p

contains three points of S that are not collinear, then it is

the plane of a face of H(S). Otherwise, there is a support p'

of S such that p and p' are parallel, S lies between the two

and there are three points of S on p' that are not collinear.



For, if there is no such p', by rotation of p we may obtain

another support p" of S such that the distance between p" and

S is smaller than that between p and S, which is a contradiction.

Hence, p' is the plane of a face of H(S). 0

Corollary 17

A finite digital surface is a convex digital plane element

if and only if its projections onto the coordinate planes are

convex digital regions and there is a face of its convex hull

such that the distance between the digital surface and the plane

of the face is less than 1.

We now present an algorithm to determine whether or not

a finite set of digital points is a convex digital plane

element.

Algorithm CONVEX-PLANE(S)

Given a finite set S of digital points, algorithm CONVEX-

PLANE returns 'True' if S is a convex digital plane element

and 'False' otherwise.

Step 1 Check if there is a coordinate plane onto which the

the projection of S is one-to-one.

If not then print (False) and return.

Step 2 For each coordinate plane do

project S onto the coordinate plane;

determine if the projection is a convex digital region;

if not then print (False) and return.

Step 3 Construct H(S), the convex hull of S.
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Step 4 Find a face of H(S) such that the distance between S

and F, the plane of the face, is less than 1.

If found then print (True) else print (False).

Return.

Algorithm PLANE(S) that determines whether or not a finite set S

of digital points is a digital plane element may be obtained from

algorithm CONVEX-PLANE by simply removing Step 2.

By Lemma 1, Corollary 4, Theorem 16 and Corollary 17,

it is immediate that these algorithms work correctly. To

analyze their computational complexities, detailed descriptions

of each step and the data structures used in the algorithms

are required. For simplicity we assume that a finite set S of

digital points is a subset of the set of N3 digital points in

the cube with edges of length n. S is represented by a run

length code such that RC(i,j),li~n and ljn, is a finite

sequence of run lengths of 0's and l's. Thus, RC(i,j) =

(XijO' kijl' ... kr) means that the (i,j)th row of the cubeijr
is composed of a run of 0's (points not in S) of length kij0

followed by a run of l's (points in S) of length t ijl and so

on.

(1) Is there a coordinate plane onto which the projection of S

is one-to-one?

If for each i and j, RC(i,j) has at most one run of l's

of length 1, then the projection of S onto the Z-coordinate plane

2is one-to-one. This takes O(n ) time. To see if the projection

of S onto the X-coordinate plane is one-to-one, we do the

UL4



following 'or each j, l>j<n: Let A[l:n] be a linear array of

size n and initialized to 0. For i from 1 to n, set A(k) = 1

if (i,j,k) is a point of S, where 1<k5n. Use RC(i,j) to check

if (i,j,k) is a point of S. If A(k) is already 1 when we try

to set A(k) to 1, then the projection of S onto the X-coordinate

plane is not one-to-one. This also takes O(n 2 ) time.

Whether or not the projection of S onto the Y-coordinate

plane is one-to-one may be checked similarly. Thus, Step 1 of

the algorithm takes O(n 2 ) time and O(n) work space.

(2) Are the projections of S onto the coordinate planes

convex digital regions?

Consider the projection of S onto the X-coordinate plane.

For each j, lj-n, create R(j), the run length code of 0's and

l's on the row y=j of the projection of S, by using the RC(i,j)'s

for all i. Each R(j) should have at most one run of l's,

since otherwise the projection is not a convex digital region.

2This procedure takes O(n ) time and O(n) work space. Next

use algorithm CONVEX in [6) to determine whether or not the

projection of S onto the X-coordinate plane is a convex

digital region. This algorithm is based on Lemma A and takes

O(n) time.

The projections of S onto the other coordinate planes

may be checked for digital convexity similarly. Hence, Step 2

of algorithm CONVEX-PLANE takes O(n2) time and O(n) space.



(3) Construction of the convex hull of S.

Use the convex hull algorithm in [13] to construct

H(S). Since S has at most n2 points, the computing time required

2 2is O(n log n) and the work space required is O(n).

(4) Is there a face of H(S) such that the distance

between S and the plane of the face is less than 1?

For each face of H(S) constructed in Step 3, obtain

the plane of the face. Then find the distance between S and

the plane using the definition given in Section 2. As soon as

we find a face of H(S) that satisfies the condition, Step 4

is completed. There are at most n2 faces of H(S) and for each

face, to find the distance between S and the plane of the face

2 4takes O(n ) time. Thus, Step 4 requires O(n4 ) time.

Summarizing the arguments given above we obtain:

Theorem 18

Algorithm PLANE(CONVEX-PLANE) determines whether or not a

finite set of digital points is a (convex) digital plane element

and has time complexity of O(n4) and space complexity of

O(n ).



7. Conclusion

This paper is a result of a continuing effort to develop

a theory of digital geometry in 2- and 3-dimensional space.

Surfaces being an important object of study in geometry,

digital surfaces, and in particular, the planarity of digital

surfaces, is the subject of this work.

Digital surfaces were defined; the definition was derived

from intuition, and partially justified by the fact that the

digital image of a plane is always a digital surface. Further

justification is based on the result that digital convexity

is a necessary and sufficient condition for a digital surface

to be a digital plane. This is an important property of

Euclidean planes.

However, there are still many properties that we might

have wanted to be necessary and sufficient conditions for a

digital surface element to be a digital plane element, but are

not. Two such properties are digital convexity and the line

property. It is an open question whether there are other

definitions of digital surface and digital plane for which

digital planes and digital plane elements would enjoy more

geometric properties that are enjoyed by Euclidean counterparts.

Finally we were able to characterize (convex) digital

plane elements by a simple geometric property. This led to the

development of relatively simple alryorithms to determine

whether or not a finite set of digital points is a (convex)

digital plane element. Even though the algorithms are



conceptually simple, they have costly time and space complexities.

Development of algorithms with more favorable time and space

complexities is desirable.
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Fig. 1. A surface with curvature near 0 everywhere
whose digital image is not a digital surface.

z

Fig. 2. A convex digital plane element R which does not
have the chord property and hence does not have
the chordal triangle property.
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Fig. 3. A digital surface element R' which has the chordal
triangle property but is not a plane element.
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Fig. 4. A convex plane element whose digital image is not
a convex digital plane element.
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